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Abstract

This paper presents a new approach to rescheduling called constraint-

based iterative repair. This approach gives our system the ability

to satisfy domain constraints, address optimization concerns, mini-

mize perturbation to the original schedule, produce modified sched-

ules quickly, and exhibits "anytime" behavior. The system begins

with an initial, flawed schedule and then iteratively repairs constraint

violations until a conflict-free schedule is produced. In an empirical

demonstration, we vary the importance of minimizing perturbation

and report how fast the system is able to resolve conflicts in a given

time bound. We also show the anytime characteristics of the system.

These experiments were performed within the domain of Space Shuttle
ground processing.

Function: Planning and Scheduling

Domain: Space Shuttle Ground Processing

Knowledge : Constraints
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Introduction

Space Shuttle ground processing encompasses the inspection, repair, and

refurbishment of space shuttles in preparation for launch. During processing

the Kennedy Space Center (KSC) flow management team frequently modifies

the schedule in order to accommodate unanticipated events, such as lack

of personnel availability, unexpected delays, and the need to repair newly

discovered problems. If the Space Shuttle ground processing turnaround

time could be shortened, even by a small percentage, millions of dollars

would be saved. This paper presents GERRY, a general scheduling system

being applied to the Space Shuttle ground processing problem.

As originally put forth in [Smi85] and [Zwe90], rescheduling systems

should satisfy domain constraints, address optimization concerns, minimize

perturbation to the original schedule, produce modified schedules quickly,

and exhibit "anytime" behavior 1.

GERRY is a novel approach to rescheduling that addresses these five

concerns and gives the user the ability to individually modify each criteria's

relative importance. In an empirical demonstration of the system, we vary

the importance of minimizing perturbation and report how fast the system is

able to converge to a conflict-free schedule (or a near-conflict-free schedule) in

a given time bound. We also show the anytime characteristics of the GERRY

system.

Problem Class: Fixed Preemptive Scheduling

Scheduling is the process of assigning times and resources to the tasks of

a plan. Scheduling assignments must satisfy a set of domain constraints.

Generally, these include temporal constraints, milestone constraints, and re-

source requirements. Temporal constraints relate tasks to other tasks (e.g.,

end(T1) < ,tart(T2)). Milestone constraints relate tasks to fixed metric

times (e.g., end(T1) < 11/23/90 12 00 00). A resource requirement con-

sists of a type and quantity of a resource (e.g., 4 mechanical technicians, 3

cranes). Each resource requirement has a corresponding capacity constraint
which states that the resource must not be overallocated.

tAn Anvfime algorithm [Dea85] can be interrupted at any point during its computation
and _ked to output a usable solution. Ideally, the algorithm should be restartable where
solution quality improves in a well-behaved manner over time.
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The Space Shuttle domain also requires the modeling of state variables.

State variables are conditions that can change over time; examples include

the positions of switches, the configuration of mechanical parts, and the

status of systems. Tasks might be constrained by the state conditions (a

state requirement) and they might cause a change in state condition (a state
effect). A state requirement asserts that a state variable must have a certain

value during a task's scheduled time. For example, in the Space Shuttle

domain, certain tasks can not be performed unless the payload bay doors are

in designated positions. State effects are changes that tasks impose upon the

state variables: when a task has the effect of opening the payload bay doors,

the state variable models the doors as "open" until some other task closes
them.

Preemption is an additional complicating factor introduced by the Space

Shuttle problem. In preemptive scheduling, each task is associated with a

calendar of legal work periods that determine when the task must be per-

formed. For example, suppose a task has a duration of 16 hours and a

calendar indicating that only the first shift of each non-weekend day is legal.

Given that the first shift of the day extends from 8:00 am to 4:00 pro, if the

task is started on Monday at 8:00 am, then it will be suspended at the end

of the shift (at 4:00 pro). It would restart on Tuesday at 8:00 am and would

complete the same day at 4:00 pro. If the task had been started on Friday,

however, it would not complete until the following Monday at 4:00 pro.

Preemption effectively splits a task into a set of subtasks. Resource con-

straints are annotated as to whether they should be enforced for each indi-

vidual subtask (and not during the suspended periods between subtasks) or

during the entire time spanning from the first subtask until the last (including

suspended periods). Labor is a resource type that is not typically required

during the suspended periods; in contrast, heavy machinery is difficult to

relocate and thus may remain allocated during the suspended periods.

Preemptive scheduling requires additional computational overhead since

for each task the preemption times must be computed and appropriate con-

straint manipulation for each time assignment must be performed.

In summary, the input to a scheduling problem is a set of tasks, each

with a work duration, a work calendar, a set of temporal constraints, a set of

resource requirements, and a set of state requirements and effects. A solution

to the problem is a decomposition of each task into its preempted subtasks,

where each subtask is assigned a start and end time and a resource pool for



eachresource request. A solution is satisfied if the subtasks of each task are

consistent with its preemption work calendar and all temporal, resource, and
state constraints are satisfied.

Rescheduling

Rescheduling is necessitated by changes that occur in the environment. Sys-

tems can respond in three ways: schedule again from scratch, remove some

tasks from the schedule and restart from an intermediate state, or repair the

schedule where the changes occurred.

Scheduling from scratch reconsiders the scheduling problem in light of ex-

ogenous events. In [HamS6], [Sim88] and [Kam90], the authors argue that it

is more efficient to modify flawed plans than to plan from scratch. Moreover,

since scheduling from scratch will generate a new schedule without consider-

ing any values from the previous solution, a high amount of perturbation is.

likely to occur.

To schedule from an intermediate state, all tasks affected by the exoge-

nous events are first removed from the schedule; scheduling then is resumed

considering the exogenous events. For example, suppose Tt, T2, T3, and T4

are tasks in a schedule that are constrained to be sequential in the order

shown. If T3 is delayed, then only T3 and T4 would be removed from the

schedule before restarting, because the other tasks are unaffected by the de-

lay. This approach is complex, because a dependency analysis is required to

determine whether a schedule modification could affect any particular task.

Further, even though a task is unaffected by an exogenous event, it may be

possible to provide a better schedule by reconsidering its assignments. For

example, placing an unaffected task much later in the schedule might cause

little perturbation and allow many tasks (which are affected by the exoge-

nous events) to fit in its place. Unfortunately, this opportunity would be

missed if the unaffected tasks axe not considered in the rescheduling process.

GERRY adopts the third approach, which is to repair the constraints
that are violated in the schedule.

Constraint-Based Iterative Repair

Constraint-based iterative repair begins with a complete schedule of unac-

ceptable qua_ty and iteratively modifies it until its quality is found satisfac-
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tory. The quality of a schedule is measured by the cost function: Cost(s) =

_"_cieConstralnts Penaltyc_ (s) * Weightc,, which is a weighted sum of constraint

violations. The penalty function of a constraint returns an integer reflecting

its degree of violation. The weight function of a constraint returns an integer

representing the importance or utility of a constraint.

In GERRY, repairs are associated with constraints. Local repair heuris-

tics that are likely to satisfy the violated constraint can then be encoded

without concern for how these repairs would interact with other constraints.

Of course local repairs do occasionally yield globally undesirable states, but

these states, if accepted (see below), are generally improved upon after mul-

tiple iterations.

Repairing any violation generally involves moving a set of tasks to dif-

ferent times: at least one task participating in the constraint violation is

moved, along with any other tasks whose temporal constraints would be vi-

olated by the move. In other words, all temporal constraints are preserve&

after the repair. We use the Waltz constraint propagation algorithm over

time intervals [Wa175, Day87] to carry this out (thus enforcing a form of arc-

consistency [Mac77, Fre82]). The algorithm recursively enforces temporal

constraints until there are no outstanding temporal violations. This scheme

can be computationally expensive, since moving tasks involves checking re-

source constraints, calculating preemption intervals, etc. 2

At the end of each iteration, the system re-evaluates the cost function to

determine whether the new schedule resulting from the repairs is better than

the current solution. If the new schedule is an improvement, it becomes the

current schedule for the next iteration; if it is also better than any previous

solution, it is stored as the best solution so far. If it is not an improvement,

with some probability it is either accepted anyway, or it is rejected and the

changes are not kept. When the changes are not kept, it is hoped that repairs

in the next iteration will select a different set of tasks to move and the cost

function will improve.

The system sometimes accepts a new solution that is worse than the cur-

rent solution in order to escape local minima and cycles. This stochastic

technique is referred to as simulated annealing [Kir83]. The escape func-

tion for accepting inferior solutions is: Escape(s, s', T) = e -lc°st(s)-c°st(s')l/T

2Note that alltemporal constraintsare alsopreserved(usingthe same Waltz algorithm)
whenever the user manually moves tasks.



where T is a "temperature" parameter that is gradually reduced during the

search process. When a random number between 0 and 1 exceeds the value

of the escape function, the system accepts the worse solution. Note that

escape becomes less probable as the temperature is lowered.

In GERRY the types of constraints that can contribute to the cost func-

tion include the resource, state, and perturbation constraints.

Resource Constraints

The penalty of a resource capacity constraint is 1 if the resource is overal-

located. If K simultaneous tasks overallocate the resource, then all K tasks

are considered violated. One of these tasks will be selected in an attempt to

repair as many of the K violations as possible. The heuristic used to select

this task considers the following information:

Fitness: Move the task whose resource requirement most closely matches

the amount of overallocation. A task using a significantly smaller

amount is not likely to have a large enough impact on the current

violation being repaired. A task using a far greater amount is more

likely to be in violation wherever it is moved.

Temporal Dependents: Move the task with the fewest number of tempo-

ral dependents. A task with many dependents, if moved, is likely to

cause temporal constraint violations and result in many task moves.

Distance of Move: Move the task that does not need to be shifted signifi-

cantly from its current time. A task that is moved a greater distance is

more likely to cause other tasks to move as well, increasing perturbation

and potentially causing more constraint violations.

For each of the tasks contributing to the violation, the system considers

moving the task to its next earlier and next later times such that the resource

is available, rather than exploring many or all possible times. This reduces

the computational complexity of the repair and, like the "distance to move"

criterion above, tends to minimize perturbation.

Each candidate move is scored using a linear combination of the fitness,

temporal dependents, and distance to move heuristic values. The repair then

chooses the move stochastically with respect to the scores calculated. After
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the repair is performed, the Waltz algorithm moves other tasks in order to

preserve temporal constraints.

In summary, this repair strategy only considers two possible moves for a

task participating in a violation: one earlier and one later. The evaluation

criterion used to select a repair is based upon three computationally inex-

pensive heuristic criteria: degree of fitness, number of temporal dependents,
and distance to move.

State Constraints

The penalty of a state constraint is 1 if the required state is not set. To

repair a state constraint, the task with the violated state requirement is

reassigned to a different time when the state variable takes on the desired

value. Similar to the resource capacity constraints, the system considers

only the next earlier and next later acceptable times and selects between

these randomly. We are currently investigating improvements to this repair

and expect to extract more useful heuristics from our experts. One effort

underway is the development of a repair that can introduce new tasks into

the schedule, thus yielding a behavior generally associated with AI planning
systems.

Perturbation Constraint

The penalty function of the perturbation constraint returns the number of

tasks that differ from their original temporal assignments. Since the weighted

penalty of this constraint contributes to the cost of a solution, schedules

with significant perturbation tend to be rejected at the close of an iteration.

We are in the process of experimenting with repairs for this constraint that

augment the information provided by its penalty and weight. Below we show

how varying the weight of this constraint can affect convergence speed and
solution quality.

To summarize, constraint-based iterative repair begins with a complete

but flawed schedule and isolates the violated constraints. Tasks are moved

according to the repairs embodied in the violated constraints. A new sched-

ule is accepted if the new cost is lower than the previous cost, or if a random



number exceeds the value of the escape function; otherwise it is rejected and

new repairs are attempted on the previous schedule. The process repeats

until the cost of the solution is acceptable to the user, or until the user

terminates the repair cycle. The system may also terminate itself if a pre-

specified number of iterations have been attempted or if a prespecified CPU
time bound has been reached.

Experiments

The problem domain for the experiments consisted of the tasks, resources,

temporal constraints, and resource constraints from the STS-43 Space Shuttle

ground processing flow. A rescheduling problem was generated by taking the

original conflict-free schedule and randomly moving ten tasks. Five such

problems were generated for the results reported below. The first and last

tasks of the original schedule were anchored in time so repairs could not
extend the duration of the entire flow.

In the experiments, we maintained the resource constraint weight at ten,

and varied the perturbation constraint weight from zero (perturbation was

of no concern) to 50 (perturbation was extremely important). The system
terminated its search when all resource constraints were satisfied or when its

run time exceeded ten minutes. Upon termination, the system returned the

best solution found. Each rescheduling run was performed with the same

settings 20 times in order to minimize stochastic variance.

Figure 1 presents the results of our experiments on the five problems

from three different perspectives. The first graph plots the number of per-

turbations for the returned solution against the weight of the perturbation

constraint. As expected, with a higher perturbation weight, the best solution

has fewer perturbations.

The second plot shows the quality of a returned solution (measured as the

number of violated resource constraints), as a function of the perturbation

weight. As the graph shows, GERRY has more difficulty satisfying resource

constraints as perturbation becomes more important.

Finally, the third plot shows the convergence time (in cpu seconds) as

a function of the perturbation weight. Average time to solution generally

increased as the perturbation weight increased.

it is interesting to note that for smaller weights on the perturbation con-

straint (< 20), the increase in resource violations is small while the drop in
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number of perturbations is fairly large. As the perturbation weight increases

beyond 20, resource violations rise quickly, and the drop in perturbations

slows.

Since there is no repair for the perturbation constraint, the system will

terminate when there are no remaining resource capacity constraint viola-

tions. Given available time, a perturbation repair would be potentially useful

in repairing a perturbation and attempt to find a lower cost solution.

Anyt ime Characterist ics

As soon as flow managers arrive at work they investigate logs, visually inspect

the shuttle, and attend brief status meetings to monitor the work performed

during the previous evening. A few hours later, they present a 3-day detailed

schedule to all relevant KSC personnel. If the flow managers use a tool to

assist them in resolving scheduling conflicts and optimizing the flow, the tool

must deliver usable schedules before they attend this meeting. The ability

to be interrupted at any time and return the best solution is essential in this

environment. Near-term violations that could not be resolved by the system

in the permitted time may be resolvable by the flow managers because they

can exploit conditions that are not modeled within the system. For example,

since task locations are not modeled, tasks that are located near each other

can share resources even though the system registers overallocations. There-

fore we are optimistic that the system will reflect effective anytime behavior

for the flow managers.

In summary, our algorithm is interruptible, restartable, and outputs a

solution when terminated. As demonstrated in Figure 2, the solution quality

increases as a step-function of time. These runs are representative of the

system's general performance.

Related Work

Our work was heavily influenced by previous constraint-based scheduling

[Fox87, Fox84, Sad89] and rescheduling efforts[Ow,88].

ISIS [Fox87] and GERRY both have metrics of constraint violation(the

penalty function in GERRY) and constraintimportance (the weight function

in GERRY). In contrast with our repair-based method, ISIS uses an incre-

mental, beam search through a space of partialschedules and reschedules by
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Figure 2: Anytime Characteristics: Best Cost versus Run Time

restarting the beam search from an intermediate state.

OPIS [Fox84, Ow,88], which is the successor of ISIS, opportunistically

selects a rescheduling method. It chooses between the ISIS beam search, a

resource-based dispatch method, or a repair-based approach. The dispatch

method concentrates on a bottleneck resource and assigns tasks to it ac-

cording to the dispatch rule. The repair method shifts tasks until they are

conflict-free. These "greedy" assignments could yield globally poor schedules

if used incorrectly. Consequently, OPIS only uses the dispatch rule when

there is strong evidence of a bottleneck and only uses the repair method if

the duration of the conflict is short. In contrast, GERRY uses the simulated

annealing search to perform multiple iterations of repairs, possibly retracting

"greedy" repairs when they yield prohibitive costs.

Our use of simulated annealing was influenced by the experiments per-

formed in [Joh90a, Johg0b]. In contrast with our constraint-based repair,

their repairs were generally uninformed. In [Zwe92b] we show that constraint

repair knowledge improves convergence speed.

The repair-based scheduling methods considered here are related to the

repair-based methods that have been previously used in AI planning systems

such as the "fixes" used in Hacker [Sus73] and, more recently, the repair

strategies used in the GORDIUS[Sim88] generate-test-debug system, in the

PRIAR plan modification system [Kam90], and the CHEF cased-based plan-

li



ner [Ham86].
In [Ming0], it is shown that the min-conflicts heuristic is an extremely

powerful repair-based method. For any violated constraint, the rain-conflicts

heuristic chooses the repair that minimizes the number of remaining con-

iticts resulting from a one-step lookahead. However, in certain circumstances

this lookahead could be computationally prohibitive. In [Zwe91], the authors

investigate the tradeoff between the informedness of a repair and its compu-

tationaUy complexity. There it is shown that the resource repair described

above outperformed a lookahead heuristic on the STS-43 Space Shuttle prob-

lem. However, on smaller problems the lookahead heuristic was superior.

Our technique is also closely related to the Jet Propulsion Laboratory's

OMP scheduling system [Bie91]. OMP uses procedurally encoded patches

in an iterative improvement framework. It stores small snapshots of the

scheduling process (c_ed chronologies) which allow it to escape cycles and
local minima.

[Mi188], [Be185], and [Dru90] describe other efforts that deal with resource

and deadline constraints. [Dru90] and [ Bo91] address related anytime issues.

Conclusions and Future Work

Our experiments suggest that our constraint framework and the knowledge

encoded in this framework is an effective search tool that allows one to adjust

the importance of schedule perturbation and other objective criteria. The

framework is modular and extensible in that one can declare new constraints

as long as their weight, penalty, and repair functions are provided. It also

reflects favorable anytime behavior.

In future experiments, we hope to better characterize the components of

repair informedness and computational complexity. We are currently eval-

uating candidate metrics of problem difficulty that could be used to guide

the selection of repair heuristics. Additionally, we are developing machine

learning techniques that allow systems to learn when to dynamically switch

between heuristics [Zwe92a].

With respect to the Space Shuttle application, the system is expected to

be in daily use sometime this year. Our most significant barrier is gathering

accurate models of tasks in an electronic form. We also plan to develop
constraints that minimize weekend labor.
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